The widespread use of information and communication technology (ICT) over the course of the last decades has been a primary catalyst behind the digitalization of power systems. Meanwhile, as the utilization rate of the Internet of Things (IoT) continues to rise along with recent advancements in ICT, the need for secure and computationally efficient monitoring of critical infrastructures like the electrical grid and the agents that participate in it is growing. A cyber-physical system, such as the electrical grid, may experience anomalies for a number of different reasons. These may include physical defects, mistakes in measurement and communication, cyberattacks, and other similar occurrences. The goal of this study is to emphasize what the most common incidents are with power systems and to give an overview and classification of the most common ways to find problems, starting with the consumer/prosumer end working up to the primary power producers. In addition, this article aimed to discuss the methods and techniques, such as artificial intelligence (AI) that are used to identify anomalies in the power systems and markets.
translated by 谷歌翻译
蜂窝网络(LTE,5G及以后)的增长急剧增长,消费者的需求很高,并且比具有先进的电信技术的其他无线网络更有希望。这些网络的主要目标是将数十亿个设备,系统和用户连接到高速数据传输,高电池容量和低延迟,以及支持广泛的新应用程序,例如虚拟现实,元评估,远程医疗,在线教育,自动驾驶汽车,高级制造等。为了实现这些目标,使用人工智能(AI)方法来实现频谱管理的新方法,以实现这些目标。本文使用基于AI的语义分割模型对光谱传感方法进行了脆弱性分析,以在具有防御性蒸馏方法的情况下识别对抗性攻击下的蜂窝网络信号。结果表明,缓解方法可以显着减少针对对抗攻击的基于AI的光谱传感模型的漏洞。
translated by 谷歌翻译
许多现实世界中的问题涉及多个可能相互矛盾的目标。多目标增强学习(MORL)方法已经出现了通过最大化偏好矢量加权的关节目标函数来解决这些问题。这些方法发现固定的定制策略对应于训练过程中指定的偏好向量。但是,设计约束和目标通常在现实生活中动态变化。此外,存储每个潜在偏好的策略是不可扩展的。因此,通过单个训练在给定域中获得整个偏好空间的一组Pareto前溶液至关重要。为此,我们提出了一种新颖的Morl算法,该算法训练一个通用网络以覆盖整个偏好空间。提出的方法是偏好驱动的MORL(PD-MORL),利用偏好作为更新网络参数的指导。在使用经典深海宝藏和果树导航基准测试的PD-MORL之后,我们评估了其在挑战多目标连续控制任务方面的性能。
translated by 谷歌翻译
剖面隐藏的马尔可夫模型(PHMM)广泛用于许多生物信息学应用中,以准确识别生物学序列(例如DNA或蛋白质序列)之间的相似性。 PHMM使用常用和高度精确的方法(称为Baum-Welch算法)来计算这些相似性。但是,Baum-Welch算法在计算上很昂贵,现有作品为固定的PHMM设计提供了软件或仅硬件解决方案。当我们分析最先进的作品时,我们发现迫切需要灵活,高性能和节能的硬件软件共同设计,以有效地有效地解决所有主要效率低下的效率PHMM的Baum-Welch算法。我们提出了APHMM,这是第一个灵活的加速框架,可以显着减少PHMM的Baum-Welch算法的计算和能量开销。 APHMM利用硬件软件共同设计来解决Baum-Welch算法中的主要效率低下,通过1)设计灵活的硬件来支持不同的PHMMS设计,2)利用可预测的数据依赖性模式,并使用chip Memory的片段记忆,使用纪念活动技术,memoigience Memoriques,Memoigience Memoriques,Memoigient, 3)通过基于硬件的过滤器快速消除可忽略的计算,4)最小化冗余计算。我们在专用硬件和2)GPU的软件优化方面实现了我们的1)硬件软件优化,以为PHMM提供首个灵活的Baum-Welch加速器。与Baum-Welch算法的CPU,GPU和FPGA实现相比,APHMM提供的显着加速度为15.55 x-260.03x,1.83x-5.34x和27.97倍,分别为27.97倍。 APHMM的表现优于三个重要的生物信息学应用程序的最新CPU实现,1)错误校正,2)蛋白质家族搜索和3)多个序列对齐,比1.29x-59.94x,1.03x-1.75x和分别为1.03x-1.95x。
translated by 谷歌翻译
操作系统包括许多启发式算法,旨在提高整体存储性能和吞吐量。由于此类启发式is不能适用于所有条件和工作负载,因此系统设计人员诉诸用户对用户的众多可调参数揭示 - 基本上负担用户不断优化自己的存储系统和应用程序。存储系统通常负责I / O重型应用中的大多数延迟,因此即使是小的总延迟改善也可能很重要。机器学习(ml)技术承诺学习模式,从它们概括,并实现适应更改工作负载的最佳解决方案。我们提出ML解决方案成为OSS中的一流组件,并更换了动态优化存储系统的手动启发式。在本文中,我们描述了我们所提出的ML架构,称为KML。我们开发了一个原型KML体系结构,并将其应用于两个问题:最佳readAhead和NFS读取大小值。我们的实验表明,KML消耗了很少的操作系统资源,延迟可忽略不计,但可以学习可以分别为两种用例的2.3倍或15倍提高I / O吞吐量的模式 - 即使是复杂的,也不是为了复杂 - 在不同的存储设备上同时运行混合工作负载。
translated by 谷歌翻译
连接和自动化的车辆安全性度量通过分析涉及SV和其他动态道路用户和环境特征之间的交互的数据来确定主题车辆(SV)的性能。当数据集仅包含从自然主义的混合交通驾驶环境中收集的有限样本时,预计公制将通过在预期域预期的域中指定在哪个域中来概括观察到的有限样本到未观察的病例的安全评估结果在该领域中,SV在统计上是安全的。然而,据我们所知,任何现有的安全指标都不能够用特定的运营领域,保证完整,证明无偏见的安全评估结果证明上述属性证明上述属性。在本文中,我们提出了一种涉及$ \ alpha $ -shape和$ \ epsilon $ - 最强大的前进不变集的新型安全指标,以表征SV几乎安全的可操作域以及SV留在安全内部的概率域分别无限期。通过覆盖各种保真度(现实世界和模拟器),驾驶环境(公路,城市和交叉路口),道路使用者(汽车,卡车和行人)和SV驾驶行为(人员驾驶员和自动驾驶算法)。
translated by 谷歌翻译
虽然我们注意临床自然语言处理(NLP)的最新进展,但我们可以注意到临床和翻译研究界的一些抵抗,因为透明度,可解释性和可用性有限,采用NLP模型。在这项研究中,我们提出了一种开放的自然语言处理开发框架。我们通过实施NLP算法为国家Covid队列协作(N3C)进行了评估。基于Covid-19相关临床笔记的信息提取的利益,我们的工作包括1)使用Covid-19标志和症状作为用例的开放数据注释过程,2)一个社区驱动的规则集合平台,3)合成文本数据生成工作流程,用于生成信息提取任务的文本而不涉及人为受试者。 Corpora来自来自三个不同机构的文本(Mayo Clinic,肯塔基州大学,明尼苏达大学)。用单个机构(Mayo)规则集进行了金标准注释。这导致了0.876,0.706和0.694的F-Scors分别用于Mayo,Minnesota和肯塔基测试数据集。作为N3C NLP子群体的联盟努力的研究表明,创建联邦NLP算法开发和基准测试平台的可行性,以增强多机构临床NLP研究和采用。虽然我们在这项工作中使用Covid-19作为用例,但我们的框架足以适用于临床NLP的其他兴趣领域。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译